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An asymptotic theory of laminar hypersonic boundary-layer separation for large 
Reynolds number is described for situations when the surface temperature is small 
compared with the stagnation temperature of the inviscid external gas flow. The 
interactive boundary-layer structure near separation is described by well-known triple- 
deck concepts but, in contrast to the usual situation, the displacement thickness 
associated with the viscous sublayer is too small to influence the external pressure 
distribution (to leading order) for sufficiently small wall temperature. The present 
interaction takes place between the main part of the boundary layer and the external 
flow and may be described as inviscid-inviscid. The flow in the viscous sublayer is 
governed by the classical boundary-layer equations and the solution develops a 
singularity at the separation point. A main objective of this study is to show how the 
singularity may be removed in different circumstances. 

1. Introduction 
The first crucial insight into separation phenomena at high Reynolds numbers was 

provided by Prandtl(l904) who argued that fluid motion is reduced to relative rest on 
solid walls within thin viscous boundary layers where the kinetic energy of fluid 
particles is considerably reduced. The flow near the surface is therefore very sensitive 
to streamwise pressure variations and, as a consequence, rapid deceleration and flow 
reversal can be induced by even a small pressure rise. In such situations, a recirculation 
zone can form near the wall, and for steady flow past a stationary wall, the skin friction 
changes sign along the body contour, with the point of zero skin friction usually 
referred to as the separation point. According to the Prandtl classical interactive 
strategy, the fluid motion around a rigid body is to be evaluated via a hierarchal scheme 
in which: (i) a solution of the Euler equations for the external flow problem produces 
an estimate of pressure distribution along the body surface, and (ii) the boundary-layer 
solution is evaluated using this pressure distribution. The displacement effect of the 
boundary layer can then be computed and the external inviscid solution is refined in 
an obvious iteration. Unfortunately, the classical interactive strategy fails in most 
circumstances (Smith 1982) because a singularity is encountered in the boundary-layer 
solution at the separation point x = x,, in any situation where the pressure gradient is 
prescribed. Landau & Lifschitz (1 944) described the structure of this singularity, 
showing that at locations upstream of xs, the skin friction decreases proportional to 
(x, - x)l iZ, while the slope of the streamlines diverges proportional to (x, - x)-l iZ. A 
crucial result was later obtained by Goldstein (1948) who demonstrated that the 
solution of the boundary-layer equations cannot be continued downstream of x,. This 
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is an apparent contradiction since, as Stewartson (1970) has pointed out, there is no 
obvious reason why reversed flow downstream of x, ‘cannot be accommodated in the 
thin boundary layer’. 

The first theoretical studies that resolved this apparent paradox were based on 
investigations of a ‘ free ’ or ‘self-induced ’ interaction, originally observed exper- 
imentally by Chapman, Kuehn & Larsen (1958). In the experiments, an oblique shock 
wave incident on a flat-plate boundary layer was observed to provoke separation well 
upstream of the point of intersection of the shock wave and the boundary layer. 
However, since the boundary-layer equations are parabolic, disturbances cannot be 
transmitted upstream within the boundary layer and the observed ‘upstream influence’ 
induced by the shock wave can only be described in terms of a solution structure which 
is locally interactive with the external flow. A theoretical framework for free interaction 
problems was constructed by Neiland (1969), Stewartson & Williams (1969), Messiter 
(1970) and Sychev (1972) through asymptotic analysis of the Navier-Stokes equations 
in the limit of Reynolds number Re --f co . A three-layer interaction region was shown 
to exist in the vicinity of the separation point having a streamwise extent O(Re-3is) and 
consisting of: (i) a thin near-wall viscous sublayer having a thickness O(Re-5is); (ii) a 
middle layer having a thickness O(RePli2), corresponding to that of the upstream 
boundary layer; and (iii) an upper layer of thickness O(Re-3i8), occupying a portion of 
the external flow above the boundary layer. Since the velocities in the viscous sublayer 
are small, this region is very susceptible to pressure variations, and even a slight 
pressure rise O(Re-’/4) is sufficient to provoke a nonlinear response and reversed flow. 
The middle region is essentially a continuation of the upstream boundary layer where 
the flow is essentially inviscid and only slightly disturbed; for this reason the 
contribution to the displacement thickness associated with the middle region is usually 
negligible compared with that of the sublayer. In the upper layer, the flow is inviscid 
and governed by linearized compressible flow equations. 

The motion in the viscous sublayer is governed by the usual Prandtl boundary-layer 
equations. However, the pressure p(x) is not known in advance, and is related through 
an interaction law to the displacement function A ( x )  associated with the sublayer. This 
relation is either the Ackeret law or a Cauchy integral relation, namely 

dA 
dx p ( x )  = --, p ( x )  = - ds, ( l . l a ,  b) 

for either a supersonic or a subsonic external flow, respectively. The functions A ( x )  and 
p ( x )  must generally be found through an iterative solution of the boundary-layer 
equations and one of the interaction laws (1.1). 

The boundary-layer solution is generally initiated upstream from the condition 

u - f y  A(x)+O as x+--co, (1.2) 

and it follows that the scaled viscous stress 7 = au/i3y+ 1 as x+- co. Consequently, 
the skin friction 7, is positive, and it follows that the interaction region of interest must 
be located well upstream of the Goldstein singularity at x,. Stewartson (1970) studied 
another alternative to condition (1.2) involving an interaction region surrounding a 
Goldstein singularity at xs ,  but was able to demonstrate that there is no solution to 
such a problem for either of the interaction laws (1.1). Thus the Goldstein singularity 
is not removable and separation cannot be explained in terms of a gradual deceleration 
of the boundary layer over an O( 1) distance along the wall under the influence of an 
adverse pressure gradient. In fact, at least in the context of separation regions that are 
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confined within the dimensions of the viscous sublayer, separation occurs as a result of 
an abrupt self-induced pressure rise within the interaction region. Solutions containing 
regions of reversed flow may be obtained which do not exhibit a singular behaviour at 
the separation point. However, it is necessary generally to formulate an additional 
condition as x+ GO, which reflects the fact that the interaction region merges into a 
known flow downstream. Such a condition affects the solution of the interaction 
problem, even for an unseparated supersonic boundary layer (Lighthill 1953). In any 
event, it is clear that the propagation of disturbances upstream observed by Chapman 
et al. (1958) can be explained in terms of a local interaction between the external flow 
and the boundary layer. Interaction theory has subsequently been applied to a great 
number of separation problems as reviewed by Neiland (1974, 1981), Stewartson (1974, 
1981), Lagerstrom (1975), Messiter (1979, 1983), Adamson & Messiter (1980), Smith 
(1982) and in the recent monograph of V. Sychev et al. (1987). 

The present paper is concerned with hypersonic boundary-layer separation on a cold 
wall. The problem was first considered by Neiland (1973) who showed that: (i) cooling 
of the wall leads to a decrease in displacement thickness of the viscous sublayer, and 
(ii) the contribution due to the main part of the boundary layer AS* is proportional to 
the induced pressure rise according to A&* = 9 p ,  where 2’ is given by 

9 = l ( $ - l ) d Y  

This integral first appeared in a study of high-speed injection into a nozzle (Pearson, 
Holliday & Smith 1958); here S denotes boundary-layer thickness and M(Y) is the 
Mach number distribution across the boundary layer. The influence of the main part 
of the boundary layer depends on the sign of 2’. If the average Mach number is less 
than unity, 2’ > 0 and a pressure increase leads to boundary-layer thickening, as in the 
case of a subsonic mainstream. On the other hand if 9 < 0, a pressure rise produces 
a decrease in boundary-layer thickness as is usual for a supersonic mainstream. 
Consequently, a boundary layer with 2’ > 0 is termed subcritical and that with 9 < 0 
is referred to as supercritical. For a cold wall, the conventional Ackeret law (equation 
(1.1~1)) must be modified (Neiland 1973) to the form 

dp dA 
p ( x )  = ST----. 

dx dx 

The terms on the right-hand side of (1.4) are associated with contributions to 
displacement thickness due to the main part of the boundary layer and the viscous 
sublayer, respectively. Here S is a parameter that will be formally defined in 92, which 
depends on the Mach and Reynolds numbers and varies inversely with respect to wall 
temperature. In normal circumstances S is small and (1.4) reduces to the conventional 
Ackeret formula. On the other hand, when the wall temperature is small with respect 
to the stagnation temperature of the external mainstream flow, S may be O(1) or 
S >> 1. The situation where S is large is of interest in this study where the first term in 
(1.4) is dominant and for which an inviscid-inviscid interaction occurs between the 
external flow and the main part of the boundary layer. In this case, the analysis of the 
viscous sublayer must be carried out in the context of a prescribed pressure gradient 
and under certain circumstances the solutions develop a singularity at the separation 
point. However, because the singularity is already embedded within an interactive 
structure, it is not removable by the methods discussed by Neiland (1969), Stewartson 
& Williams (1969), Messiter (1970) and Sychev (1972). 
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Hypersonic flows with strong wall cooling are of considerable current interest owing 
to the necessity of maintaining the thermal integrity of future hypersonic vehicles 
(Walberg 1991 ; Townend 1991). In general, complex multi-layer phenomena can occur 
in this environment, especially when boundary-layer separation develops ; recently 
Messiter, Matarrese & Adamson (1991) have studied the case of strip blowing on a 
wedge and Brown, Cheng & Lee (1990) have investigated compressive free interactions 
and the compression ramp with strong wall cooling. The present study is also 
concerned with the compression ramp and the relation to the work of Brown et al. 
(1990) will be discussed subsequently. The problem is formulated in $2, and the 
supercritical and subcritical cases are addressed in $3 and $4 respectively. The nature 
and type of singularities encountered and how they may be removed is discussed in 
each case. 

2. Formulation 
2.1. The upstream boundary layer 

Consider the flow of an ideal gas past the solid body shown in figure 1, consisting of 
a plate of length L oriented parallel to a uniform flow upstream, with a second plate 
inclined at ramp angle 8. The upstream flow has speed U,, density p,, enthalpy h, and 
pressure p,, and the specific heat ratio y is assumed constant. Define flow variables 
such that lengths, velocities, pressure, density, enthalpy and absolute viscosity are 
made dimensionless with respect to L, U,, p,, pm, U k  and po respectively; here po is 
the viscosity coefficient evaluated at a reference enthalpy of UZ,, which is appropriate 
for large Mach number. The viscosity coefficient p’ is assumed to depend on the 
temperature alone according to the power law p‘ = (h’)”, where n is a positive constant 
and h’ is the enthalpy; the prime will be used throughout to denote unscaled non- 
dimensional variables. The Reynolds number and mainstream Mach number are 
defined by 

(2.1 a, 6)  

and both are assumed to be large. The analysis is presented in terms of two parameters, 
namely the hypersonic viscous interaction parameter x and e defined by 

Re0 = P m  u, LIP03 M ,  = ~,(YP,lP,)-112? 

x = M2, Reo1l2, = Re-Il4, 0 (2.2) 
both of which are small. Note that Re, is defined in terms of po; a Reynolds number 
Re based on ,urn (evaluated at the mainstream static temperature) may also be defined 
(Brown et al. 1990), and for n = 1, Re is proportional to M L  Re,. 

As shown in figure 1, Cartesian coordinates (x’,~’), with origin at the leading edge 
of the first plate, are adopted with corresponding velocity components (u’, v’). Scaled 
boundary-layer variables upstream of the corner are defined by 

y’ = €X1/2Y, u’ = q1/2V(x’, Y)+. . . , p‘ = 1 +xP(x’ ,  Y ) + .  . ., 
p’ = Ml2R(x‘, Y )  + . . . , (2.3 a-d) 

where p‘ and p’ are the pressure and density respectively. Substitution into the 
Navier-Stokes equations yields 

(2 .4~)  
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I. L - Lx‘ 
FIGURE 1. Geometry and coordinate system. 

where u’, h‘ and p‘ are functions of (x’, Y ) ,  and the Prandtl number Pr is assumed 
constant. The viscosity law and ideal-gas state equation are 

(2.5a, b)  

respectively. The mainstream enthalpy (non-dimensionalized by U L )  is O(M-,2) as 
M ,  -t co and thus the matching conditions to the mainstream require 

u’+ 1, k’+O as Y+S(X),  (2.6) 

where S ( X )  denotes the boundary-layer thickness. At the plate surface, 

u ’=  V=O, h’=g,=h:/UL at Y = O ,  (2.7a-c) 

where h: is the dimensional wall enthalpy and g ,  is called the temperature factor. 
Commonly, g,  is O(l), such as for an adiabatic wall or some specified surface 
temperature distribution. However, in this study the wall is cold in the sense that 
g,  + 1 ; this condition implies that the surface temperature T, is small with respect 
to the stagnation temperature of the external inviscid flow but not necessarily that 
T, 6 T,, where T, is the mainstream static temperature. In view of the viscous 
dissipation term in (2.4c), h’ is O(1) in the boundary layer, and thus for g ,  < 1, 
h’ = 0 to leading order at the wall; it is now shown that in this circumstance the 
upstream boundary layer splits into two regions, denoted a and /3 in figure 1. 

One possible solution of the upstream equations (2.4) has a self-similar form in 
which u‘, h’ and R are functions of 7 = Y(X’)-’/’, but this special form is not required 
in the subsequent analysis. In fact, the theory may be applied to a variety of body 
configurations (other than in figure I), where a hypersonic boundary layer approaches 
a compression corner, even if the surface temperature is not constant. For the following 
development, it is only essential that the dimensionless shear stress (,u‘ au’/a Y )  and heat 
flux (,u’Pr-’ah’/aY) are O(1) as Y-tO. It follows, using the viscosity law (2.5a), that 
the asymptotic solution of (2.4) may be expressed as 

Here the arbitrary functions a(x’) and b(x’) can, in principle, be obtained from a 
‘global’ solution of (2.4), taking into account all boundary conditions. 

It is easily inferred from (2.8) that the solution is not uniformly valid near the wall 
since the density function R+ co as Y+ 0. Although h’ tends to zero for small Y,  a new 
region must be considered near the wall having a thickness such that Y’l(n+l) = O(g W ) 
in order to satisfy the exact condition ( 2 . 7 ~ ) .  This inner zone is denoted region a in 
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FIGURE 2. Schematic diagram of the multilayer structure that develops near the corner 
(not to scale). 

figure 1, with the main part of the boundary layer being region /3. It follows from (2.3) 
and (2.8) that in the near-wall region a 

(2.9 a-c) 

h‘ = g,, h(.x’, 8) +. . . , (2.9d-f) 

where p’ is described by ( 2 . 3 ~ )  and ? is O(1) in zone a. Substitution of (2.9) into the 
Navier-Stokes equations shows that the viscous and conduction terms are dominant 
in the momentum and energy equations, namely 

u’ = g,  zi(x’, f )  + . . . , v’ = €pg;+2 f ( x / ,  f i  + . . . , y’ = q l / Z  g, n+1 p , 
p’ = Mi2&’ k(xf7 f i+ . . . , p’ = gE,i(x’, r‘) + . . . 

(2.10a, b) 

to leading order and (2.5) becomes ,ii = h”, h = ( y -  1)-l kl. The solution of (2.10) 
satisfying 6 = f =  0, h^ = 1 at f =  0 and which matches with the solution (2.8) in 
region p as f +  cc has the form 

A 

A = 7{[b(x’)]”+l a(x‘) y+ 1}1/(1z+1)-- a(x’) 
b(x 1 b(x‘) ’ 

h = {[b(x’)]”+l f +  l}l/(n+l). (2.1 1 a, b) 

In particular, 

zi + a(x’) n + l  [b(x’)l” f +  . . . , ,i, 6 --f 1 + . . . , as f +  0. (2.12a-c) 

2.2. Estimates for  the interaction region 
A multi-layer structure occurs in the corner shown in figure 2 and here physical 
arguments will be used first to establish the relevant orders of magnitude. Suppose 
(subject to verification) that a viscous sublayer (labelled region 1 in figure 2 )  occurs in 
the interaction region, which is much thinner than the upstream sublayer a. The 
following estimate for the streamwise velocity component in region 1 is suggested from 
matching with the solution (2.9a, c) and (2.12a) in region a :  

(2.13) 

Here y’ is synonymous with the thickness of region 1 and - is used throughout this 
section to imply comparable magnitude. When the pressure rise Ap‘ induced by the 
interaction is sufficiently large to provoke a nonlinear response in the sublayer 1 (figure 
2) ,  the velocity variation Au’ is comparable to u’. Taking into account the non- 
dimensionalizations introduced in 52.1 and (2. l ) ,  a balance between the inertia terms 
and each of the pressure gradient and viscous terms gives 

112 n 
u’ - Y’l(.X gw). 

U’ 
Re;’ g i  ~ (2.14~2, b) 

g;1(u’)2 - Ap‘, g;’ M - z L  U‘)2 - 
Ax‘ (Y‘>2 ’ 
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respectively. Here the density estimate p’ - Mi’ggwl has been used (from (2.9e)) and 
Ax‘ denotes the longitudinal extent of the interaction region. A further relation follows 
from linearized compressible flow theory describing the external pressure disturbance 
induced by the displacement effect of the sublayer; this is the Ackeret formula which 
in the present dimensionless variables gives 

Ap’ - M,y’/Ax’. (2.15) 

Equations (2.13t(2.15) may be solved for u’, Ap’, y’ and Ax’ to yield 
314 n t l j 2  , y’ -  ex  314 g, n+l /2  , u ‘ - x  114 g,  112 , A p / - ~ l / ~ .  (2.16a-d) A x ’ - x  g ,  

The estimates (2.16) are valid provided the contribution to the displacement 
thickness associated with the main part of the boundary layer (region 2 in figure 2) is 
at most comparable with that of sublayer 1 .  To assess the contribution of region 2, note 
that here u‘ - 1, p‘ - M-,2 and p‘ - 1 in order to merge to the upstream layer p 
described by (2.3); in addition, the effectively inviscid flow is isentropic satisfying 
p’@’)-Y = constant. Consequently, it is easily shown that along each streamline in 
region 2 

A d  - Ap‘, Ap’ - p‘Ap‘, (2.17a, b)  

from the streamwise momentum equation and isentropic relation, respectively. It 
follows from (2.16d) and (2.17) that the flow perturbations in region 2 are linear since 
x + 1 ,  in contrast to the nonlinear response produced in region 1 (cf. (2.14a)). 
Furthermore, if d denotes the normal distance between any two streamlines in region 
2, it is easily shown from continuity of mass that Ad - dAp’, where from (2.3a) d is 
O ( S X ~ ~ ~ ) ;  consequently, using equation (2.16d), it is evident that Ad - ex ,  and thus the 
lateral separation distance Ad of two arbitrary streamlines is small with respect to any 
initial value d. 

Consider now the most general flow regime (Neiland 1973) when regions 1 and 2 
both contribute to the displacement thickness so that Ad - y’. It is easily shown using 
(2.16 b)  that this regime occurs for g, small and specifically 

g,  n+lD - x1/4. (2.18) 

It may be verified that the thickness of region 1 is g; times smaller than the near-wall 
layer a upstream, while the extent Ax‘ of the interaction region is O(M,) larger than 
the upstream boundary-layer thickness. Consequently, the normal pressure variation 
across regions 1 and 2 is expected to be negligible to leading order. 

2.3. Formulation of the interaction problem 
From the estimates (2.16), scaled variables in sublayer 1 are defined by 

(x’- 1, y’) = x 314 g, n i l12  (x* ,  ey*), (u’, v’) = x1I4gZ2(u*, m*) +. . . , (2.19a-d) 

p! = g;p*+ .... p’ = 1 + y ~ ~ ’ ~ p *  + . . . , h’ = g, h* + . . . , p’ = M ,  2 g, -1 p * + . . . , 
(2.19 e-h) 

Substitution of (2.19) into the Navier-Stokes and energy equations shows that 
ap*/ay* = 0, h* = p* = 1 and p* = l/(y-- I), respectively, the latter results following 
from matching to equations (2.12) in region a. Therefore, the flow in the sublayer 1 is 
incompressible to leading order and the governing equations are 

dp* aZU* au* av* L(u*E+v*L  a,*) = --+- dx* ay*2’ -+-- ax* ay* = 0. 
7-1 ax* ay* 

(2.20) 
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The velocities u* and v* must vanish at the body contour y* = Y,*(x*) defined by 

Here the ramp angle is defined by 8 = do, where 8, is assumed to be an O( 1 )  constant. 
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Y,*(x*) = 0 if x* < 0; Y,* = 8,x* if x* > 0. (2.21) 

To match the solution (2.12) in the upstream region a, 

u*+Ay*+ ... as x*+-co, A=abn/ (n+l) .  (2.22) 

Here a and b denote the limiting values of a(x’) and b(x’) as x + 1 ,  which are obtainable 
from a global solution of (2.4) in the upstream boundary layer. For finite x*, the 
solution of (2.20) must have the following asymptotic form: 

(2.23) 

where A*(x*) is a displacement function, which is to be found from a solution of the 
complete interaction problem. 

The next zone is an intermediate layer between regions 1 and 2 (shown in figure 2 
as the hatched area), which is a continuation of the upstream near-wall region a. The 
normal variable f in region a is related to y* by f = g;1/2 x1l4y* ; substitution in the 
asymptotic form (2.23), using (2.19c, d ) ,  gives 

dA* 
dx 

U* + Ay* + AA*(x*) + . . . , v* +-A- *y*+. . .  as y*+co, 

U’ = Ag, f+Ag:2x1/4A*(~*)+ ..., V’ = egw( -A*) f +  ..., (2.24a, b) 
dx* 

and this suggests the following expansions in the intermediate layer: 

where the functions fi,, I?,, and 
is given by (2.19e) and 

(u’, h’) = g,{ fin( f), kn( f)} +&’’ x’/~{ fil, fil} + . . . , v’ = eg, + . . . , (2.25 a-c) 

are functions of (x*, f). The expansion for pressure 

p’ = M-,2(g,’ I?,( f )  +g,3’2 x1/4k1(x*, f )  + . . .>, p‘ = g;/2,( f )  + . . . . 
(2.26a, b)  

Upon substitution in the Navier-Stokes equations, it is easily shown that the solution 
matching that in the sublayer 1 as f + O  is given by 

(2.27a, b) 

with ,in = I?: and R, = (7- l)-’&’. Consequently, the leading terms in (2.25) are 
simply the continuation of the solution in region a into the interaction zone. The 
matching conditions to the sublayer fil+AA* and c+-A(dA*/dx*) f as f + O  
follow from (2.24), and it is easily shown that 

on( f )  = (a /b)  {fin( f )  - l } ,  I?,,( f )  = {b”+’ f +  l}’/(”+’), 

1 do, dA* dHn 
U ,  = A*(x*)-, V, = -~ U,(Y), = A*(x*)-. (2.28~-c) 

dY dx* dY 

It may be inferred from (2.25) and (2.28) that the slope of the streamlines is invariant 
across the intermediate region and is given by v’/u’ = - E dA*/dx*. 

The main part of the boundary layer (region 2 in figure 2) is the continuation of the 
upstream region /3, and here the normal variable Y, defined in (2.3a), is related to f 
in the intermediate layer by Y = gE+’ 9. Substitution in the asymptotic forms (2.27) for 
large f yields 
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with an enthalpy expansion similar to that for u'. This suggests the following 
expansions : 

(u', h') = {C0( Y ) ,  EO( Y ) )  +g:+l/' x~/~{O,(X*, Y), E1(x*, Y ) )  + . . . , (2.30a, b) 

(2.30c, d) 
w 

Y' = ~ K ( x * ,  Y ) +  ..., p' = M-,2{R"0(Y)+g:+1'2~1'4R"1(~*, Y)+ ...}, 
in region 2, with the pressure given by (2.19e). The solution in region 2 must match that 
in the upstream boundary layer (region /3) as x* +. - 00 and therefore fin, go and R", 
may be regarded as known functions, describing the solution of (2.4) in the limit 
x+ 1 and satisfying conditions (2.8). 

The solution for the perturbation functions GI, <, kl, and El is given in Appendix 
A, and it follows that the slope of the streamlines at the outer edge of region 2 is 

dA* { dX* 
V'/U'+.€  -__ (2.31) 

where 6, is the thickness of the upstream boundary layer evaluated as x +  1 and 

(2.32) 

Here M,( Y )  is the Mach number distribution across the boundary layer just upstream 
of the interaction region. The dimensionless parameter S* is defined by 

m g ,  0 x g,  3 (2.33) s* = ~ 1 / 2  -(n+l/zt = 1/4 -(n+l/2) 

and it should be noted that if g, is O(l), S* 4 1 .  However, for a sufficiently cold wall 
(8, 4 l), S* may be O( 1) or even S* $- 1 .  The first term on the right-hand side of (2.3 1) 
is the conventional displacement effect associated with the sublayer, while the second 
term is the contribution due to the main part of the boundary layer. 

To complete the formulation of the interaction problem, an inviscid potential flow 
(region 3, figure 2) outside the boundary layer must be considered, and here the 
characteristic independent variables are x* and Y*, defined y' = Y*. 
The scaling for the dependent variables can be determined from (2.31) and 

(u', u', h') = (1,0, h, U;') + € ( M i 1  u,, u,, M-,1 h,) + . . . , (2.34 a-c) 

(P' ,P')  = (1 ,  1 ) + x 1 i 2 ( ? / P l , P J + . . . .  (2.34d, e) 

The perturbation functions ul, u,, pl, p1 and h, in these expansions are functions of 
(x*, Y*) and must vanish as ( x * ~ +  Y*')+ co. From (2.31), matching to the main part 
of the boundary layer (region 2) requires 

dA* dP* u1(x*,0) = --+s*2'- 
dx* dx* . 

(2.35) 

Substitution of (2.34) into the Navier-Stokes equations leads to a familiar problem 
associated with linearized supersonic flow, and the solution gives 

p*(x*) = p,(x*,  0) = ---+S*Y--,, dA* dP* 
dx* dx 

(2.36) 

which defines the pressure distribution in the interaction zone. This law, together with 
(2.20) constitute the complete interaction problem in a region whose streamwise extent 
is M ,  times greater than the thickness of the upstream hypersonic boundary layer. 
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Note for 9 > 0, a pressure rise (dp*/dx* > 0) leads to an increase of displacement 
thickness of region 2, just as for a subsonic mainstream flow. On the other hand, if 
9 < 0, a pressure rise produces a decrease in the displacement thickness as in 
supersonic flows. Consequently, a boundary layer with 2 > 0 is referred to as 
subcritical and that with 9 < 0 is called supercritical (Neiland 1973). For supersonic 
flows with large mainstream Mach number, the supercritical case is expected to be 
most common. For example, it can be shown that if viscosity depends linearly on 
temperature (n  = l), the Blasius solution is supercritical for y < 2.37 and subcritical 
for y > 2.37. 

2.4. The general interaction problem 
The interaction problem may be cast in a general form through scaling transformations 
and a Prandtl transposition according to 

x* = h-i/ac- X, y* = C(T+ z), Y,* = cY,, A* = c(A- Q, (2.37~-d) 

where the constant c = (y  - 1)''' , e quations (2.20) and (2.36) become 

-+- = 0, 
au as dp  a2u au av 
ax a7 d x  a ~ '  ax a7 

u-++- = --+- 

dP +S2- dA d q  
dx' P = - - + -  d x  d x  

(2.3 7 e-g) 

(2.38a, b)  

(2.38 c) 

where s = ( y -  1)- 112 h514s*. (2.39) 

Solutions of this system depend on the level of wall cooling, characterized by the 
magnitude of S or equivalently the Neiland number defined by 

N = (sl91)413. (2.40) 

Three regimes are immediately evident corresponding to: (i) N < 1, for g,  >> x ' / ( ~ ~ + ' ) ;  
(ii) N = O(l), for g, - x ~ / ( ~ ~ + ~ ) ;  (iii) N 9 1, for g,  4 x ' I ( ~ ~ + ' ) .  In the first of these 
regimes S < 1 and the interaction problem (2.38) reduces to that considered by Jenson, 
Burggraf & Rizetta (1975) and Ruban (1978), wherein condition (2.38~)  becomes a 
conventional Ackeret law. Numerical solutions in the second regime have been 
obtained by Brown et al. (1990) and Cassel(l993) and generally show that wall cooling 
acts to inhibit separation. The situations of interest in the present study correspond to 
the third regime with strong wall cooling in the sense that N-t  00. 

For N large, the following scaled variables are indicated: 

= N-314- x, = N-1147, = N-114- U, v = N1I4V, (2.41 U-d) 

p = N-'12p. A = N-II4A, Y ,  = N514F. (2.41 e-g) 

Substitution in (2.38) yields 

(2.42) 

with the interaction law 
dp d F  1dA 
dx dx N d x  

p = sgn(9)-+----, (2.43) 
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and the boundary conditions 

(2.44 a-c) 

@ + + y 2 + A ( x ) y +  . . .  as y + + 0 0 .  (2.45) 

The interaction problem depends on two parameters. The Neiland number N 
represents the ratio of the contributions to the displacement thickness from the main 
part of the boundary layer (region 2) and the viscous sublayer (region 1). The second 
parameter is the scaled ramp angle defined by 

p = 6, h-1/2N-1/2 5 (2.46) 

where the body contour is described by 

F = O  for x < O ;  F = P x  for x > O .  (2.47 a, b )  

The problem N+cc has also been considered by Brown et al. (1990), and the 
relation of this work to the present study is described in Appendix B. It should be noted 
that an additional regime exists for very high levels of wall cooling. As g,+O, the 
thickness of the upstream layer 01 in figure 2 shrinks at a faster rate than the sublayer 
1, according to (2.9c), (2.19b) and (2.41 b ) ;  it can easily be shown that both layers have 
comparable thickness when g, = O ( ~ l i ( ~ + ' ) ) .  Consequently the interaction problem 
(2.42)-(2.45) is valid for large N in the range 

(2.48) X l / ( n + 2 )  + g ,  + X1/(4n+2) 3 

or alternatively 1 < N + x - ~ ' ( ~ + ' ) .  Therefore a fourth regime exists for g ,  = O(X'/(=+~)) ,  
wherein compressibility effects must be taken into account in the viscous sublayer 1, in 
view of the fact that matching to the upstream region 01 requires that the density and 
enthalpy are dependent on y .  

3. Supercritical separation 
3.1. Introduction 

In the present study, a theory is constructed for large N ,  wherein the dominant 
contribution to displacement thickness is due to the main part of the boundary layer; 
this may be described as an inviscid-inviscid interaction between regions 2 and 3 (see 
figure 2). The form of the interaction law (2.43) suggests the following expansions, for 
scaled ramp angles ,8 of O(1): 

(3.1 a, b )  p = p0(x )  + N-'p,(x) + . . . , A ( x )  = A0(x) + N-'A,(x) + . . . , 
and the leading-order term for pressure then satisfies 

where H is the Heaviside function. For the supercritical case (2 < 0), the solution of 
(3.2) which is finite as x-t- 00 (Neiland & Sokolov 1975) 

po=O if x < O ;  po =p(l-e-") if . x > O .  (3.3) 

Thus the flow is undisturbed upstream of the corner and the pressure starts to rise at 
x = 0, tending smoothly to /3 as x - t  co. 
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FIGURE 3. Variation of wall shear stress for increasing dimensionless ramp angle p. 

In the sublayer (region l), the stream function pk may be written 

k = kO(X, y )  + N-l@&G y )  + . . ., 
and substitution of (3.1) and (3.4) into (2.42) gives 

with boundary conditions 

@ - o = O  ak at y = O ;  ~,+!jy2+Ao(x)y+ ... as y++00, (3.6) 
ay 

and the initial condition 
k.,+!jy2 as x+--oo. (3.7) 

Therefore the sublayer problem is a conventional boundary layer with pressure 
gradient prescribed by (3.3). 

Since p,, and hence An are zero for x < 0, the initial condition (3.7) was used to 
initiate a step-by-step integration of (3.5) starting from x = 0. Calculations were 
carried out using a standard Crank-Nicolson method for a number of mesh sizes and 
the results are believed to be grid independent. Calculated results for skin friction 
distribution 7, = a2v+ko/i3y2 at y = 0 are shown in figure 3 for increasing values of the 
ramp angle p. It may be seen that TJX) initially decreases and then subsequently 
reaches a minimum at a location downstream of the corner x = 0. The skin friction 
then recovers as x+ 00 toward a value appropriate to a constant-pressure boundary 
layer far downstream of the corner. With increasing ramp angle /3, the minimum in 7, 
decreases and finally reaches zero at a critical value Po = 0.7548 at x = x, = 0.50. This 
phenomenon is known as marginal separation (Ruban 1981 ; Stewartson, Smith & 
Kaups 1982). The behaviour of r,  near the point of zero skin friction is shown in 
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FIGURE 4. Wall-shear-stress distribution near the critical location xo = 0.5 and ramp angle Po; 
lowest curve is /I = 0.7548 and 7, is plotted for increments A/I = 0.0003. 

figure 4 for ramp angles approaching the critical value /3, in steps of A/3 = 0.0003. 
Note that 7, is almost linear on either side of x, as /3+/3,. 

Exactly the same behaviour occurs in the incompressible boundary layer near the 
leading edge of a thin airfoil at a critical angle of attack (Werle & Davis 1972). A 
detailed analysis (Ruban 1981) shows that, as the critical angle of attack is approached 
from below, a singularity develops at the point of zero skin friction. However, in 
contrast to the Goldstein singularity, the singularity is ‘weak’ in the sense that it does 
not preclude continuation of the boundary-layer solution downstream beyond xo. 
However, a discontinuity develops in the slope of the streamlines near the boundary- 
layer edge; thus a local singular behaviour near x = x, is induced in the pressure field 
and an interaction region develops which has been analysed by Stewartson et al. (1982) 
and Ruban (1982). To distinguish this situation from self-induced separation, the 
phenomenon is referred to as marginal separation and is described by the solution of 
an integro-differential equation for the skin friction distribution along the airfoil 
contour in an interaction region centred on x,, having a streamwise extent of O(Re-ll5). 
Stewartson et al. (1982) and Ruban (1982) considered perturbations of O(aRe-2/5) 
about the critical angle of attack Po and obtained numerical solutions of the integro- 
differential equation for different values of the parameter a. At a critical positive value 
of a, say as, the skin friction at a particular streamwise location vanishes, and for 
a > a6, the appearance of a short separation bubble in the interaction region near the 
leading edge of the airfoil is predicted. However, there are no solutions of the problem 
for alarger than a second critical value ab, with ab > a,. In accordance with experiment, 
this suggests that for angles of attack beyond a critical value, the short bubble ‘bursts’, 
giving rise to an extended separation region on the upper surface of the airfoil. It was 
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XO 

FIGKJRE 5. Schematic diagram of the sublayer structure near the marginal separation point 

also shown by Brown & Stewartson (1983) that in the range ds < d < ah, there are at 
least two solutions, one of which corresponds to a relatively long separation region. 
This non-uniqueness suggests that a hysteresis effect and possible fluctuations in the 
airfoil lift and drag may occur near the critical angle of attack. 

3.2. Structure near marginal separation 
It will now be demonstrated that marginal separation theory applies to supercritical 
hypersonic separation on a cold wall. Let Y,,(y) denote the stream function at x = x, 
for the critical ramp angle Po; in principle, Yo, may be found through a numerical 
integration of (3.5) as x+x, and is of the form 

(3.8) 

(Stewartson et al. 1982; Ruban 1981), where a, is a constant. Here A, is the leading 
term in an expansion about x, for the pressure gradient, and from (3.3) 

where s = x - x, and A, = Po eP0. Furthermore, 

Yo, + b2 + A,(.x,) y + . . . as y + co, (3.10) 

where A,(x,) may be regarded as a known constant. 
Upstream of xu, the sublayer (region 1) splits into two layers as shown schematically 

in figure 5 (Ruban 1981). In the near-wall viscous layer, denoted as region a, the 
solution of (3.5) is of the form 

v+, = ;Ao t3vS” + ;ao pvr” + 5’ ;Ao q3 - 2A, + 59fz(y) + . . . , (3.1 1) ( v 7 )  

where 

f = ( - ~ ) ” ~ ,  v = y / ( - ~ ) l ’ ~ ,  f 2 ( ~ ) = ~ b o v z - q v  4 5 + T v .  A 0 4  9 (3.12~-C) 

The constants a, and b, may be found from a numerical solution of (3.5) and both a, 
and A, are positive. Region b in figure 5 is a locally inviscid region where y is O( 1) and 
the solution matching (3.11) as y + 0 is given by 

(3.13) v+, = ~ , , ( Y >  + (- S> U‘,,(Y> + ( - s)714 Y,,(y> + . . . as s + 0, 

with (3.14) 
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For marginal separation, the solution may be continued downstream of xo (Ruban 
1981) and a similar analysis in regions a’, b’ of figure 5 shows that the expression 

describes the stream function simultaneously in regions a, b, a’ and b’ of figure 5.  
Consequently, the wall shear stress 

T ~ = ~ I  a2$0 + ~ , ~ s ~ + b ~ ~ s ~ ” ~ + . . .  as s+O, (3.16) 

in agreement with the numerical results shown in figure 4. In addition, it follows from 
(3.6), (3.10) and (3.15) that 

y=0 

where I, is a constant defined by 

(3.17) 

(3.18) 

It is evident that the displacement function, as well as the streamlines in region 1, have 
a discontinuous slope at x = x,. 

The leading-order sublayer solution (3.15) alters the pressure distribution near x,, 
and to evaluate the pressure perturbation p,(x) in (3.1 a), the scaled ramp angle p is 
written in the form 

p=po+N- lp l+. . . ,  (3.19) 

to consider perturbations about the critical ramp angle Po, where p1 is an O( 1) variable. 
Substitution of (3.1) and (3.19) into the interaction law (2.43) yields 

and the solution which vanishes as x + - cc has pl(x) = 0 for x < 0 and 

pl(x) = e-’ 1 et { p1 -%} dt for x > 0. 

(3.20) 

(3.21) 

Thus p,(x) is continuous everywhere, but the pressure gradient dp,/dx has a jump 
discontinuity at x = x, described by 

at s = 0- 
dx -ao/h, at s = O+. 

(3.22) 

The question now arises as to whether this jump provokes the formation of an 
additional inner interaction region near x = x,, where the pressure distribution 
depends on the displacement thickness of both the viscous sublayer and the main part 
of the boundary layer (regions 1 and 2 in figure 2 respectively). Such an inner 
interaction region must be centred on x, and involve a shorter streamwise scale, which 
can be estimated using the marginal separation analysis of Ruban (1981). 

Returning to the near-wall expansion (3.11) in region a, it may be readily inferred 
that the first and third terms arise from the pressure gradient. The second term contains 
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an eigenfunction +a0 q2, and the exponent in the streamwise dependence ( is 
determined from a detailed analysis (Ruban 1981) of the equation forf2(q), appearing 
in the fourth term of (3.1 l), in which all solutions having exponential growth as 
q+ 00 must be ruled out. Now suppose that in a region near xo, the second-order 
pressure gradient induced by the sublayer N-' dp,/dx becomes large enough to be 
included in the equation for f,(7), thereby potentially altering the whole expansion 
(3.1 1). This defines the occurrence of the inner interaction region, and to estimate its 
streamwise extent, any term in the boundary-layer equation (3.5) associated withf,(q) 
may be used. In particular the viscous term is (-~)~/l"f;(q) and this becomes 
comparable to N-l dy,/dx when 

s = x - x o  = 0(N-2/3), (3.23) 

since it is evident from (3.22) that dp,/dx is O(1); this argument yields a preliminary 
estimate of the extent of the inner interaction region. 

3.3. Higher-order terms 
Substitution of (3.1) and (3.4) into (2.42) leads to the following linear problem for 
$Ax, Y) : 

with 31=T-o  a$, - at y = O ;  $ , + A , ( x ) y  as y-tco, (3.25) 

and $,+O as x - t - c o .  The solution of (3.24) in the near-wall layer a immediately 
upstream of x, consists of a discrete set of eigensolutions (Ruban 1981), each of which 
generates a series in powers of 5 = ( --s)li4, having the form 

$1 = {K2g1(q) + k2(7) + W4)} + {t2h1(7) + O(t5)1 ++PO t3q2 + . . . (3.26) 

where 7 is defined in (3.126); the expansion (3.26) is based on the limit process 5-0 
with 9 = O( 1) and the constant po is defined by 

(3.27) 

The eigenfunctions in (3.26) that do not exhibit exponential growth as q+ co are 
(Ruban 1981) 

g , - - 1  - ,alq2, g, = &q2,  h, = +clq2, (3.28) 

where a,, b, and c, are arbitrary constants; however, the equation for g ,  depends on 
g, and it can easily be shown that 6, is proportional to a,. According to (3.26) 

(3.29) 

and hence a,  and c, can, in principle, be estimated as functions of /I1 from a numerical 
solution of (3.24) initiated at x = 0. 

In region b of figure 5 ,  y is O(1) and the solution of (3.24) matching (3.26) in region 
a is of the form 

b 
Y & , ( y ) + ( - ~ ) ~ ~ ~ ~ ~ ~ ~ ( y ) + Y , , ( y ) +  ... as s-tO-. (3.30) 

A 0  
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The function Y13 satisfies the matching condition 

Y13(y )  --f i c ,y2  +&, y3 . .  . as y --f 0, (3.31) 

and a complicated equation involving Yo, which is omitted here. Using (3.10), (3.25) 
and (3.30), the behaviour of llrl as y + GO may be determined and hence A ,  is found to 
be of the form 

A ,  =-- ' 1  +-- b,+... as s+o-. (3.32) 

The solution (3.4), comprising (3.11) and (3.26) in region a and (3.15) and (3.30) in 
region b, is not uniformly valid near x = x,. As a result of the unbounded growth of 
( - s)-li2 g,(q), the first eigenfunction in (3.26) becomes comparable with the second 
term in (3.1 1) when (-s) - N-l i2;  a similar conclusion is reached by comparing the 
first term in (3.30) with the second term in (3.13). It therefore appears that expansion 
(3.4) becomes disordered when 

(3.33) 

This suggests a much larger interaction region than the previous estimate (3.23) within 
which the perturbation pressure p ,  does not influence the sublayer solution to leading 
order. However, the estimate (3.33) is implicitly based on the assumption that a, is O(1); 
it is now shown that a, must be o(1) as N+ GO and that the original estimate (3.23) is 
correct. 

In a marginal separation analysis near the leading edge of an airfoil at angle of 
attack, Ruban (1981) has considered a similar problem. When applied to the present 
problem, Ruban's (1981) analysis shows that the expansion (3.4), when continued into 
an inner interaction zone where s = O(N-l/'), yields the following solution: 

( - s) A,  (- 4 1 ' 4  A, 

s = (x - x,) = O(N-1'2). 

Evidently, a numerical solution of the boundary-value problem (3.24) will yield a 
different value of a, as s+ 0- for each value of pl. For a, positive, the skin friction in 
the proposed inner interaction zone 

(3.35) 

is positive everywhere, achieving a positive minimum at s = 0;  the displacement 
function 

a 
A0 a ( a, r2 A(x)  = A(x,)+I,s+" s2+2-1N-l (3.36) 

is smooth and therefore an inner interaction region does not form near x = x,. On the 
other hand, for a, < 0, (3.34) exists only upstream of the point of zero skin friction 
which occurs at 

x , = x , -  2-N , ( I:: - )"' (3.37) 

and where a Goldstein singularity develops. The interpretation of these results is as 
follows. Starting with large negative values of p,, integration of (3.24) yields positive 
values of a, and a point of zero skin friction does not occur. However, for some critical 
O(1) value, say /3, = PIC, a, = 0 and the ramp angle p cannot be increased since larger 
values of /3, provoke a Goldstein singularity. The solution structure close to this critical 
angle is now considered. 
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FIGURE 6. Sketch of the structure of the inner interaction region (not to scale). 

Since the lengthscale (3.33) is not relevant when a, is small, consider again the 
estimate (3.23), and it follows that the contribution of the first term in (3.32) to the 
displacement function is comparable to the term O(s) in (3.17) if a, - This 
suggests the following continuations of expansions (3.1) and (3.4): 

$1 = (A0,p0 ,  $o) +N-l(A, ,~l ,  $,I +N-4/3(A,~p2, $2) + . . . . (3.38) 

The interaction law (3.2) suggests that the ramp angle should be written 

(3.39) 

and it is easily shown thatp,(x) = p(1 -e-"); here p is a parameter which may be either 
positive or negative. The problem for $2 is the same as (3.24) and, consequently, the 
solution for $2 in regions a and b is essentially the same as in (3.26) and (3.30) 
respectively. Denoting a", and bl as the analogue of the coefficients of the eigenfunctions 
in (3.30), it is evident that different values of p will give rise to values of dl which can 
be obtained from a numerical solution for yk2. Since the problem for is linear, a", may 
be regarded as proportional to p. Moreover (3.26) and (3.30) may still be considered 
to apply but with a, replaced by a, = N-1/3a"1. 

3.4. The inner interaction region 

3 = X - x  0 -  - N-2'3X *, (3.40) 

and it may be inferred from (3.17), (3.22) and (3.32) that A(x)  and the pressure p(x)  
should be expanded as 

A = Ao(x0) +N-2'3A,(X,) + . . . , (3.41) 
p = po(x0) + N-'/'hO X ,  + N-'pl(x0) +N-4/3ih,  X i  + Np5'3P ,(X,)+ . . . , (3.42) 

P = Po + N-',8,, + NP4l3p,  

In this region, a new longitudinal variable is defined from (3.23), 

where 
- 

a a, A, +. I, X ,  +"( -1,) +-( - XJ1 +. . . , P, + p o x ,  + . . . as X ,  + - 00, 
A0 ho 

(3.43a, b) 

with ,uo defined by (3.27). Substitution into (2.43) then yields the inner interaction law 

(3.44) 

The boundary-layer structure associated with the inner interaction region is shown 
schematically in figure 6. Region B is the continuation of inviscid layer b, and here it 
follows from (3.15) and (3.30) that $ should be expanded as 

(3.45) $ = Yoo(y) + N-2'3!F1(X*, y )  + Np1!Pl3(y) + N-"6!F2(X*,y) + . . . . 
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Substitution of (3.42) and (3.45) into the boundary-layer equations (2.42) leads to 
equations for and ?2 which have the solutions 

(3.46 a) 

(3.46 b) 

Here B, and C, are arbitrary functions which from (3.15) and (3.30) satisfy 

B,(X,) + a,( -X,) + GI( - XJ1 + . . . , 
C,(X,) + b,( - X,)-714 + . . . as X, + - co 

(3.47a) 

(3.47 b)  

in order to match the solution in region b;  in addition, from (2.45), (3.10), (3.18), (3.41) 
and (3.45), the function B, is related to the displacement function A ,  by 

(3.48) 

The near-wall region A in figure 6 is the continuation of viscous layer a into the inner 
interaction region. The thickness of layer a decreases as ( -s)l14 for small s and since 
s is O(N-'13) in the inner interaction region, it follows that the thickness of region 
A is O(NP1I6). Consequently, the appropriate variables in this zone are X, and 
Y ,  = N'I6y. It may be inferred from the solution in region a, described by (3.1 1) and 
(3.26), that the stream function in region A is of the form 

+ N-413 5 y2 + N -  " ' " Z ( X * ,  Y,) + . . . . (3.49) 
2 "  

The equations for !q and 
verified that the solution for 

are obtained by substituting (3.49) into (2.42). It is easily 
matching that in regions a and B is 

Y: = iB,(X,) Y i ,  (3.50) 

with B,(X,) still arbitrary, apart from the matching condition (3.47a). The function 
B,(X,) is determined through consideration of the problem for e, which is 

with (3.52) 

To match the solution (3.4), (3.1 1) and (3.26) in region a and the solution (3.45) and 
(3.46) in region B as y + 0 

a2 1 
6 

A 0  4 Y 9 , + 0 X ,  Y i + - p ,  Y;+;C*(X*) Y i +  ... q+- 
8! 5! 

as X,+-m and Y,+co,  (3.53) 
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(3.54) 

The system of equations (3.5 lF(3.54) constitutes the inner interaction problem and 
may be written in a more convenient form by defining new dependent variables 

p* = prJ x* + p2, (3.56) 

and introducing the following affine transformations 
y/ - a1/2 A-2 lp X - a-2/3 A-113 X y - a-l/6 A-113 y 

2 -  o o * - , * - , ( 3 . 5 7 4  
p 2 = a1/3 0 A-413 0 p 7 B * - 0  - a1/3 h-113 0 B 7 C * - 0  - a516 A-413 0 C. (3.57d-f) 

The inner interaction problem is now defined by 

with the boundary conditions 

- - i (B2-X2+2a") at Y = 0, (3.59a, b) Y=O, -- 
i3Y 
ay 

Y + i C Y 2 - : ( B 2 - X 2 + 2 & )  Y . . .  as Y+co, oras  X+-co. (3.60) 

Here a" is a similarity parameter defined by a" = -$ ail3 Ail3, which is proportional to 
b, since GI is proportional to p. Recall that N-4/3P is the deviation of the ramp angle 
/f from its critical value /30+N-1P,c. Lastly, the matching conditions (3.47) to the 
solution upstream in region b become 

(3.6 1 )  

where 6 = bo a: A;314. Downstream of the interaction region, matching to region b' 
requires that 

B(X)+X+ ... as X+co.  (3.62) 

It was shown by Stewartson (1970) and Ruban (1982) that the solution for (3.58) exists 
and is not exponentially large at Y+ co, only if the right-hand side of the boundary con- 
dition (3.59 b)  and the pressure gradient satisfy the following compatibility condition : 

B ( X )  + - X +  & / X + .  . . , C ( X )  --f &( - X)'I4 + . . . as X + - co, 

(3.63) 

where r denotes Gamma function. This is the fundamental equation of marginal 
separation theory. In the present case, the interaction law (3.58b) gives the governing 
integro-differential equation for B(X) : 

(3.64) 

It may be noted that because the interaction law (3.58 b)  differs from that associated 
with the airfoil problem at angle of attack, the integrand in (3.64) is different from that 
in the problem considered by Ruban (1982) and Stewartson et al. (1982). 
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(increasing 6). 

1 

-4 -2 0 2 5 

FIGURE 8. Dependence of B(0) on the similarity parameter a". Dashed line shows 
asymptotic result as B(O) + 2h2/ri+. . . . 

To obtain numerical solutions of (3.64), it is useful to develop expansions for B for 

(3.65a) 

B 2 - X 2 + 2 a " + 4 h P 2 + . . .  as X - t c g .  (3.656) 
Numerical solutions were obtained using the trapezoidal rule to approximate the right- 
hand side of (3.64) and the resulting set of nonlinear algebraic equations were solved 
using Newton iteration. It follows from (3.50) and (3.57e) that B ( X )  is proportional to 
the skin friction, and distributions for various values of a" are shown in figure 7 .  For 
values of a" less than a critical value of 1.287, the skin friction is everywhere positive. 
On the other hand, for a" > 1.287, the negative values of B indicate the presence of a 
separation bubble in the boundary layer. As the ramp angle is increased (by increasing 
a"), the separation point moves progressively upstream; however, since the inner 
interaction region is centred on x = xo = 0.5 on the ramp, the separated region is 
always located downstream of the junction point of the ramp. 

The dependence of B(0) on the parameter a" is shown in figure 8; B(0) is unique and 
exists for all 6, in contrast to marginal separation at the leading edge of an airfoil 

large 1x1, and using (3.61), (3.62) and (3.64) it may be shown that 
B~ -x2  + 2a"+ -$a"h( - X)-3/2  + . . . as X+ - co, 
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(Brown & Stewartson 1983), where the solution of the governing integro-differential 
equation exhibits non-uniqueness and does not exist above a certain value of E. It may 
be inferred from figure 7 that as cl increases, corresponding to increasing ramp angle, 
the solution for B develops a steep variation near the separation point x,, which itself 
is large and negative. On the other hand the reattachment point X, appears to 
approach zero. As X increases from left to right across X,, B changes abruptly from 
-1 to + 1 through a layer of thickness O(clW4); the solution as ti + 00 may be 
constructed in a manner described by Brown & Stewartson (1983), and it can be shown 
that 

(3.66) 

In addition, B(0) + 2h2/E + . . .; this asymptotic result is shown as a dashed line in 
figure 8 and is in good agreement with the numerial calculation. In view of the 
behaviour of X, indicated in (3.66), the present marginal separation theory merges into 
self-induced separation as the ramp angle is progressively increased with a"+ 00. 

4. Subcritical separation 
When the boundary layer approaching the corner (figure 1 )  is subcritical, 2 > 0 and 

for large values of N the leading term p,(x) in the pressure expansion (3.1) may be 
evaluated from the interaction law (2.43) (Neiland & Sokolov 1975) and 

po = P e x  for x < 0;  po = p for x > 0. (4.1) 

Since the pressure rises upstream of the corner and then is constant along the ramp, 
separation for 2' > 0 can only occur on the flat surface upstream of the corner (figure 
1). Defining xu = logp, the pressure on the flat surface is exp (x+x,); thus an increase 
in P leads to a parallel shift along the x-axis in the pressure distribution, which 
therefore has a universal form for all ramp angles. Because the boundary-layer 
problem (2.42)-(2.45) is invariant to the transformation x + x + x,,, the leading-order 
pressure distribution (4.1) may be represented as p,(x) = ez, which holds upstream of 
the ramp and the separation point. In contrast to the supercritical pressure distribution 
(3.3), there is no parameter that can be varied to alter the basic character of the 
boundary-layer flow; once the ramp angle p is sufficiently high, a point of zero skin 
friction will occur at a location denoted by x = x, and the appearance of a Goldstein 
(1948) singularity at x, is inevitable. 

The structure of the Goldstein singularity is well known. Unlike marginal separation 
(cf. (3.8)), the streamwise velocity profile at x = x, contains a term O(y4) for small y .  
As s = x-x, + 0-, the viscous sublayer 1 (shown in figure 2) splits into a viscous near- 
wall layer denoted as region a in figure 9, where y is 0(( - s ) " ~ ) ,  and a locally inviscid 
layer denoted as b, where y is O(1). The solution in the near-wall layer a has the form 

~n = t3r3 + t " f ( ~ >  + 5Yh) + . . . ?  (4.2) 

where 6 and 7 are as defined in (3 .124 b) and 

(4.3) 

with y being finite at s + OW. Here A, = ex& is the pressure gradient dp,/dx evaluated at 
x = x,. The constants a,  and 6 ,  are arbitrary but can, in principle, be obtained from 
a numerical solution of the system (3.5)-(3.7) with p, = ex. 
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FIGURE 9. Schematic diagram of asymptotic structure in the sublayer near separation 
(not to scale). 

In the inviscid region b 

where the stream function at separation has 

-2 

y5+ . . .  as y’-0, Ynn = &y3 -~ u0 

240 (4.5) 

to match with (4.2). At the external edge of layer 6 

!P,,,-&.” + AO(x,) y + . . . as y +  co, (4.6) 

where A,(x,) can be found from a global numerical solution. From (3.6) and (4.4) the 
displacement function upstream of separation has the form 

(4.7) 

From (2.43), the next term in expansion (3.1 a) satisfies 

wherep, + 0 as x + - co. Clearly, pl(x) remains finite in the vicinity of xs, but from (4.7) 
the pressure gradient is singular with 

Using the same expansion (3.4) for $, the perturbation 1//1 satisfies (3.24) and (3.25) 
with the pressure gradient given by (4.9). The boundary-value problem for @l is 
identical to that considered by Smith & Daniels (1981) in their study of the 
incompressible boundary-layer structure near a small hump on a wall. If the hump is 
located near x = 0 with representation y =’hd113Re-5i8F(Re3isd1x), it is contained 
within the sublayer of a triple-deck structure. For the height parameter lz = 0(1), 
solutions exhibiting reversed flow which are regular at separation are possible. Smith 
& Daniels (1981) considered the case of large h and small d and showed that the 
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boundary layer on the obstacle develops a Goldstein singularity on the downstream 
side of the hump. However, the singularity can be removed through consideration of 
a series of regions having successively shorter streamwise lengthscales, thereby 
permitting a smooth transition into a separated region downstream of the hump. In 
physical terms, this may be described as a 'compensation regime', in which the 
displacement thickness variation is identical to that of the shape of the obstacle but 
having the opposite sign; thus the combination of the hump shape and displacement 
cancel, leaving the slope of the streamlines at the outer edge of the boundary layer 
unaffected. This 'compensation' regime occurs when the hump extent is much smaller 
than the characteristic streamwise length of the interaction region (Smith et al. 1981). 
This is precisely the case here where the small vicinity of a point of zero skin friction 
is embedded deep within an interaction zone. Consequently, the analysis will follow the 
work of Smith & Daniels (1981), with a minimum of detail, in notation appropriate to 
the present problem. 

The solution of (3.24) in the near-wall viscous layer 2 is of the form 

11.1 = 1% &l(d +g1(7) + glog & 2 ( r )  + tg[g,(r) + . . . ?  (4.10) 

as [+ 0, with y being O(1). The fourth term is forced by the singular pressure gradient 
(4.9), while the second term is necessary to prevent exponential growth for large y in 
g,(y). However, it emerges that g,(y) is itself an eigenfunction, and an additional term 
log Gl(y) is required to avoid exponentially large behaviour in g, as y + co. The 
solutions for g,, g, and g, which are not exponentially large as 7-f co are 

El($ = ia"1 ?I2, g,(r) = a.1r2, 22(7) = a 4  r2> (4.1 1) 

and the equation for g,(7) is 

(4.12) 

The solution of this equation satisfying g,(O) = g;(O) = 0 has been obtained by Smith 
& Daniels (1981) and is not exponentially large as y + 00 only if 

This determines the first eigenfunction in (4.1 l), and it may be shown that 

ylogq+ ... as y-fco. g ,  = !ja2T2-- a0 a", 
*O 

(4.13) 

(4.14) 

The constant a,, as well as a, and a", which are associated with the other eigenfunctions 
in (4.1 l), are arbitrary but, in principle, could be found from a 'global' numerical 
solution of (3.24). 

In region b, the solution of (3.24) which matches with (4.10) as y + 0 is of the form 

cl ll.l = ( - $1'2 log ( - s) 2 Yh0( y )  + ( - s)-l/2 5 qo( y )  
4h0 A0 

a" + ( - 4 - 1 / 4  log (-3) 2 yk0(y) + (-s)-1/45 ~ ~ ( y )  + . . . . (4.15) 
4A0 A 0  

Because the leading terms in (4.10) and (4.15) are large as s+O-, the expansion (3.4) 
is not uniformly valid. By comparing N-l  times the first term in (4.15) with the second 
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term in (4.4), it may be seen that a balance is achieved when -s = O(N-l log N ) .  
Formally defining a new streamwise variable 2 by 

x = x, + N-1 log N 2 ,  (4.16) 

it may be inferred (as shown in figure 9) that two regions and B occur near xs, which 
are the continuations of zones Z and b, respectively. The form of ~ in the inviscid layer 
B may be inferred from (4.4), (4.15) and (4.16) and 

Sl. = Yo,( y )  + q10g N )  J1 + ;(log log N )  J 2  + E J 3  + PN-'/2(log N )  J4 

c1/2N-1/2 (1 g log N )  G5 + 21/2N-112$6 + . . . , (4.17) 

where Z = Null2 

(4.17) into (2.42) leads to 
N ,  and E+ 0 as N - t  00. Here, Gt = $$(g, y )  and substitution of 

a2J. a+. 
axay  ax Y'' ( )4- Y$,(yj-4 = 0, i = 1,2, ..., 6.  (4.18) 

From (4.9), it may be shown that dp/di? - 1 + O(3, and it follows that the equations 
for J i  are independent of the pressure distribution in region with solutions 

(4.19) 
1 

J t R  Y )  = - &m yl,(Y),  
A0 

where the &(a) are arbitrary functions to be found. 
Upon substitution of (4.19) into (4.17), the asymptotic behaviour of the stream 

function I++ for large values of y may be obtained using (4.6), and from (2.45) it is 
readily shown that the displacement function is of the form 

It follows from (2.43) that the expansion for pressure in region 6 is 
p ( x )  = pn(x,) + N-'(log N )  A, 2+ N-lpl(xs) + N-lqlog N )  &2) 

+ N-'E(log log N )  E(2) + N-lZE(2)  + . . . , (4.2 1) 

where A, = p,(x,j and the interaction law reduces to 

for i =  1,2,3. 
d e  - 1 dgi 
dX-h,z (4.22) 

The thickness of layer 3 (figure 9) decreases as (- s)1/4 as s + 0- and for layer A, where 
s = O(N-' log N ) ,  the characteristic normal variable 

= .*y, €* = ~ - 1 / 4 1 & 4 ~ .  (4.23) 

Using (4.2) and (4.10) written in terms of ?, it may be inferred that the form of the 
asymptotic expansion for + in region W is 

is - 

@ = a€*%, P3 + €*4J? + N-y1og log N )  3; + N-lJ,* 
+ ~*~44* + e*N-l(log log N )  $: + "*N-l&,* + . . . , (4.24) 

to be found. Substitution of (4.21) where the coefficients $: are functions of 2 and 
and (4.24) into (2.42) leads to equations for the &:, the first three of which are 

(4.25) 
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e a$* - 
@ ? = 4 = 0  at T = o ,  &?+f&(f )P2+  ... as X+-CO or P + + m .  

a ay  
(4.26 a-C) 

The solutions of (4.25) are 

$5 -*  - - 3 'B" i( f) P2 for i = 1,2,3, (4.27) 

and it is easily shown that the arbitrary functions j i  must have - 
B " l ~ a n ( - X ) 1 ~ 2 - ~ i i l ( - ~ ) ~ 1 ~ 2 +  ..., B " , + & ( - ~ ) - 1 / 2 + . . . ,  (4.28a, b) 

B", +L( - X)-1'2log ( - f) +a,( -f)-1/2+. . . , (4.28 c) 

as g + -  co in order to match the solution (4.2) and (4.10) in region 2. To determine 
the functions El, B", and B",, the boundary-value problems for $:, &:, and $$ must be 
considered (Smith & Daniels 1981), and it can be shown that 

a " -  
4 

a -  - B" - 2 ( X ,  - X)--1/2, El = U , ( F $  - f ) 1 / 2 ,  (4.29a, b) 
2 -  4 

- z -  - 
B, = 2 (X,q - X)-l/* log (Zs - 2) + al(gs - Z)-1/2. (4.29 c) 

Here Xq = -i i1/(2an) in order to satisfy (4.28), where X, is positive in view of (4.13). 
It is evident that regions A and fi simply serve to shift the singularity downstream to 
fs and that the pressure gradient does not influence the solution in either region A or 
fi (cf. (4.25)). However, from (4.22) and (4.29) the last three terms in the pressure 
expansion (4.21) are now known, and it may be confirmed that the expansion becomes 
disordered when fs - 2 = O(log-l N ) .  

Consequently, as shown in figure 9, a new viscous region A and an inviscid layer B 
centred on 2 = f, occur with an even shorter lengthscale, in order to accommodate the 
singular behaviour of the skin friction implied by (4.29). Defining a new streamwise 
variable by 

x = x, + N-1 log N Z s  + N-lX*, (4.30) 

and writing the solution (4.17) in region fi in terms of X, (using (4.27) and (4.29)), it 
may be verified that @ must be expanded in region B as 

@ = Y, , (Y )+N- , ' 2~(X* ,Y )+ . . . .  (4.31) 

4 

The expansion for pressure in region B may be inferred by substitution of 

2 = 2, + log-1 NX* 

2, + ~ - l [ h ,  X* +P~(X,JI 

in (4.21), and using (4.22) and (4.29), it follows that 

P = Po(xs> + N-'(log N )  
+ N )  &fS) + N - ~ / ~ P * ( x * )  + . . . . (4.32) 

Substitution of (4.31) and (4.32) into the momentum equation (2.42) leads to 

- 1  !e = - B*(X*) 
An 

(4.33) 
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where B*(X,) is an arbitrary function which must satisfy the condition 

B* + a,( - X*)l” + &( - XJ1” log (- X,) + a,( - X*)-lI2 + . . . as X ,  + - co, 
(4.34) 

in order to match to the solution upstream in region g. It follows from (4.31) that the 
displacement function is given by 

1 
A = A0(x,)  + N-l12 - B*(X,) + . . . , 

A0 

and substitution of (4.32) and (4.35) into the interaction law (2.43) yields 

dP* 1 dB* 
dX, h,dX,’ 

- __ - -~ 

(4.35) 

(4.36) 
” -2- 

where B*(X,) is still arbitrary. 
The equation governing B*(X,) is determined through consideration of the viscous 

layer A shown in figure 9. From (4.27) and (4.29)’ the thickness of region A is 
decreasing as (gS - 2)1’4 as 2- fs; however, (2, - 2) becomes O(1og-l N )  as region 
A is approached and, consequently, F is O ( l ~ g - l / ~ N ) .  Therefore from (4.23) y is 
O(N-l14) in region A. Defining y = NP1I4 Y,, substitution of = Y, 10g-l’~ N in the 
expansion (4.24) in region A indicates that the asymptotic expansion for the stream 
function in region A has the form 

(4.37) 

It is readily shown that the solution for the first term is = iB*(X,) Y t .  The equation 
for Y,* contains the unknown pressure function P*(X,) in the (4.32) and the solution 
satisfying the matching condition, Y,* --f - a: Y5,/240 as X ,  + - GO, exists only if the 
skin-friction function B* and P* satisfy 

q) = N-3/41h 6 0  Y3 * + N -  1yIT(X*, Y*)+N-5’4Y;(X*, Y*)+ .... 

(4.38) 

(Stewartson 1970; Smith & Daniels 1981). Using the interaction law (4.36) and (4.13), 
it may be seen that (4.38) becomes 

(4.39) 

Smith & Daniels (1981) showed that the solution of (4.39) satisfying (4.34) decreases 
with increasing X ,  passing smoothly through zero at  a positive value of X,, denoted 
here as X*s. Since the displacement function B*(X,) is proportional to the skin friction, 
the boundary-layer solution therefore passes smoothly through separation at X,, and 
a region of reversed flow occurs downstream of X*s. However, the solution then 
terminates at a subsequent location downstream, denoted X*o, where a more severe 
singularity develops with 

B* + a“,(X,, - X*)-’I2 as X ,  + X*o. (4.40) 

This behaviour implies a strengthening region of reversed flow and indicates that 
another nonlinear region, centred on X,, and having a still shorter streamwise scale, 
must be considered in order to remove the singularity. 

From (4.40), the second term in expansion (4.37) becomes comparable to the first in 
a new inner zone denoted as A‘ in figure 9 where Y ,  = O(N-1112) and 

x, -x.+~ = 0 ( ~ - - 1 / 3 ) .  

7 F L M  274 
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x = x, + N-’ log N f s  + N-lX, ,  + N-4/3A-5/3 0 7  X y = N-1/3A--2/3 0 Y ,  (4.41 a, b) 

where the factors of A, have been introduced for convenience. In the inviscid region B’ 
(figure 9), the characteristic variables are X and y and the expansions for stream 
function and pressure are 

$ = Yo,( y )  + N--1/3A;2/3 B(x) Po, + . . . , (4.42) 
(4.43) p = p , ( ~ , )  + N-l(log N )  A, fs + N-l(p,(x,)  + A, X,,J + N-4/3A;2/3 P(X)  + . . . , 

and in order to match the solution in region B 

B ( X )  + a“,( - X)-1/-2 + . . . , P ( X )  + X +  Ail2 a“,( - x)-1/2 + . . . 
as X+-00. (4.44a, b) 

The interaction law (2.43) gives 
dB - 1+- 

d P  
dX dX’ 
-- (4.45) 

In the inner region A ,  the stream-function expansion is of the form 

I) = N-lh,l Y(X, Y )  + . . . , 

ay PY a w w  - d P  a 3 ~  

and substitution in (2.42) yields the following inner problem 

+-3 

aYaXaY aXi3Y2 dX a Y 3  
_- - -__ 

with the boundary conditions 

; Y + f Y 3 + 3 q X )  Y 2 . . .  
aul 
ay 

Y = - = O  at Y=O 

along with the interaction law 
P ( X )  = B ( X ) + X ,  

(4.46) 

(4.47) 

as Y+ 00, (4.48) 

(4.49) 

which follows from (4.44b) and (4.45). Finally to match the upstream solution in 
region A 

y / = f Y 3 + ~ ~ c T 1 ( - X ) - 1 ’ 2 Y 2 + . . .  as X-t-00. (4.50) 

Smith & Daniels (1981) obtained a numerical solution of the interaction problem 
(4.47)-(4.50) and showed that a smooth solution exists for all X .  Downstream of the 
separation point as X +  00, an extended separation region forms near the body surface. 
Consequently in the present case, for a sufficiently high ramp angle, separation occurs 
on the flat surface (figure l), and an extended region of reversed flow develops 
downstream toward the ramp. 

5. Concluding remarks 
During the first decade after the seminal studies of Neiland (1969) and Stewartson 

& Williams (1969) on supersonic boundary-layer separation, it was widely recognized 
that self-induced separation theory could be applied to a range of separation 
phenomena at high Reynolds numbers. This was supported by Stewartson’s (1970) 
conclusion that classical Prandtl boundary-layer theory, which leads to the formation 
of Goldstein singularity at a point of zero skin friction, cannot be improved by 
introducing an inner interaction region near the singular point, for either subsonic or 
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supersonic external flow. Self-induced separation theory was subsequently applied to 
a great number of phenomena associated with the boundary-layer separation, 
including supersonic and subsonic separation on a smooth surface, separation near 
corners of a body contour, and separation induced by wall blowing or by a jump in 
surface temperature. 

Subsequently, it was determined that there are at least two situations when self- 
induced separation theory cannot be applied. The first is in marginal separation which 
was first discovered in a study of short separation bubbles that form near the leading 
edge of a thin airfoil (Stewartson et al. 1982; Ruban 1982). In this case, classical 
boundary-layer theory does not lead to the formation of a Goldstein singularity but 
rather to a relatively weaker singularity at the point of zero skin friction. The solution 
may be continued downstream of the marginal separation point, and therefore the 
Prandtl theory holds almost everywhere, requiring improvement only in the vicinity of 
the singular point; an interaction between the boundary layer and external inviscid 
flow governs the formation and possible bursting of the separation region. Here, it has 
been shown that marginal separation theory also describes supercritical boundary- 
layer separation on a cold wall. The present problem provides the first example where 
a smooth transformation of marginal separation theory into self-induced separation 
theory occurs, taking place here as the ramp angle increases. It is worthwhile to note 
that Cassel(l993) has carried out a series of calculations for a compression ramp with 
N = O(1) and finds solutions which blend smoothly with increasing N into the 
structure obtained in $3. 

There is a second general case of boundary-layer separation, namely that described 
by Smith & Daniels (1981) and used in $4 of the present paper to describe subcritical 
boundary-layer separation on a cold wall. In the present problem, there appears to be 
no other way of constructing a theory of the separation process, except the classical 
hierarchical approach leading to a Goldstein singularity. At the same time, the 
appearance of this singularity does not automatically imply a failure of the theory. 
While the singularity cannot be removed if the usual ‘subsonic’ or ‘supersonic’ 
interaction law is utilized (Stewartson 1970), it has been shown that it may be removed 
in the subcritical boundary layer on a cold wall when a ‘compensation’-type 
interaction law governs the flow behaviour in the inner interaction region. The 
numerical solutions obtained by Cassel(l993) for increasing N also support the theory 
developed in $4. A further study of this regime has recently been carried out by 
Zhikharev (1993). 

Part of the work was completed while A. I. R. was visiting Lehigh University as a 
United Technologies Fellow. This work was supported in part by United Technologies 
Corporation and the Air Force Office of Scientific Research under Grant No. 49620- 
93-1-01 30. 

Appendix A 
Here the solution in the main deck (region 2 in figure 2) is considered for the case 

of a cold wall ( g ,  < 1). Upon substitution of the expansions (2.19e) and (2.30) into the 
Navier-Stokes equations, it is easily shown the streamwise momentum and energy 
equations become 

- - - -sol - - d u o -  dp* - - afi, - -dH,-  - dp* 
R,U -+R V---S*-,  R,U,-+R V--S*U,-. ( A l a , b )  

‘ax* ‘ d Y  dx* ax* O dY dx* 
1-2 



192 R. M .  Kerimbekov, A .  I .  Ruban and J .  D. A .  Walker 

Here the parameter S* = ~ ~ / ~ g ; , ( ~ ~ ~ ~ ~ )  is assumed O(1). The continuity equation is 

and from the ideal-gas equation of state 

Y E"R", + E ,  R"" = -S*p*. 
1 - -  

R,H, = ~ 

y -  1' Y - 1  

To solve this system, differentiate (A 3b) with respect to x* and using (A 3a) and 
(A 1 b)  to eliminate ?I??,/c?x*, it may be shown that 

Thus the continuity equation (A 2) becomes 

afil  a6 - dp* -+-=-US"- ,  
ax* ay '' dx* 

and upon substitution for afil/2x* in (A la), it follows that 

In view of conditions (2.8) which are satisfied by 6, and R",,, the right-hand side of (A 6) 
has an integrable singularity as Y+O and the solution matching that in the 
intermediate layer is 

1 l}dY} 

To leading order M i  = R", o;, where M,( Y )  is the local Mach number in the outer part 
of the boundary layer approaching the interaction region (region in figure 2). 
Evaluation of (A 7) at the boundary-layer edge Y = So leads to the result (2.31). 

Appendix B 
Here the relation of the work of Brown et al. (1990) to the present study will be 

described in terms of the notation used in this paper. Brown et al. (1990) identify the 
same three parameter ranges described in 52.4 with N 4 1, N = 0(1), and N + 1, 
referring to each situation as subcritical, transcritical and supercritical, respectively. 
Here, the terminologies subcritical (2' > 0) and supercritical (2' > 0) are used to 
connote the sign of the integral 2' in (2.32) as in Neiland (1973). Brown et al. (1990) 
do not address the situation 2 > 0, but do obtain numerical solutions for the 
supercritical case (2 < 0) for both N = O( 1) and N 9 1. The present theory for large 
N does not agree with a calculated result of Brown et al. (1990) (their CT + m) and here 
the reasons for the discrepancy are addressed. The relationship between the variables 
defined in (2.41) and those utilized by Brown et al. (1990) for the large-N formulation 
may be expressed as 

x = N-3Z, y = N-ly", ($.,p, F, A )  = N - 2 ( ~ , P , F ,  A">. (B 1) 
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It has been suggested by a referee that the variables with the tilde provide the 
appropriate description for the case N +  00, and here this suggestion will be pursued. 
First it is clear that for large N and finite 2 and y”, the original variables x and y are 
small. Thus (2,y”) may be considered to describe ‘inner region’ variables while ( x , y )  
describe an outer region. The form of the interaction problems (2.42)-(2.47) is not 
altered by the transformations (B 1) apart from: (i) the interaction law (2.43) which 
becomes 

(as in Brown et al. (1990; their equation (2.72) for large a); and (ii) the equation of the 
ramp, which is now 

F = o  for Z < O ;  F = V / N ) ~  for i7.0. (B 3 )  

It is evident from (B 3 )  that in the new variables the apparent ramp angle is PIN and 
for p = O( 1) is small as N + co. 

The analysis in $$3 and 4 is based on the assumption that p is O(l), and in such 
situations, the solution of the ‘inner’ interaction problem with (B 2) and (B 3) may be 
expressed as a small perturbation form about the trivial solution u“ = j7 according to 

P p = -P,(R) + . . . , 
N 

- P -  A =--A&?)+ N .... 

It is evident therefore that for p = O(l), the ‘inner’ region is non-characteristic and 
nothing of interest happens here. On the other hand, the situation where PIN is O(1) 
implies that the lower deck produces a stronger displacement effect, and this is 
essentially the case considered by Brown et al. (1990) for large N .  However, in this 
situation, the ‘inner’ region described by the variables (B 1) is deeply embedded in the 
outer region described by the variables in (2.41). As discussed in $5’3 and 4, two cases 
arise depending on the sign of the integral 9 in (2.32). 

In the subcritical case 9 > 0 and separation takes place upstream of the ramp 
corner on the flat surface. For finite p, the distance between the separation point and 
the ramp corner is finite on the scale of the ‘outer’ variable x but very large on the scale 
of the ‘inner’ variable 2. For larger values of p, separation takes place at an increasing 
distance from the ramp corner and, consequently, the ‘inner interaction’ region 
proposed by the referee would appear to be surrounded by a region of recirculating 
flow. 

For the supercritical case 9’ < 0 and separation takes place downstream of the ramp 
corner for P being O(1). With increasing /3, the separation point moves closer to the 
corner while the reattachment point moves farther downstream. Thus to carry out a 
calculation in the ‘inner’ region suggested by the referee, a downstream boundary 
condition would be required which would properly match to a semi-infinite 
recirculation region as i7+ co. The formulation of Brown et al. (1990) pertains for 
N = O(1) wherein separation is generally confined to the immediate vicinity of the 
ramp corner; however as Brown et al. (1990) have noted, their calculated pressure 
distributions for large N (large CT) do not reach a plateau level downstream of the 
corner. In contrast, recent numerical solutions obtained by Cassel (1993) exhibit a 
pressure plateau for all Nand clearly show that with increasing N the separation moves 
out of the corner and up onto the ramp. Cassel’s (1993) results confirm those of the 
present study which show that the streamwise scale of the interaction region expands 
as N - t  co and that new scalings are necessary. 
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